Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(22): 4868-4875, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37867384

RESUMO

A diagnostic test based on microfluidic image cytometry and machine learning has been designed and applied for accurate classification of erythrocytes and leukocytes, including a unique fully-automated 5-part quantitative differentiation into neutrophils, lymphocytes, monocytes, eosinophils, and basophils, using minute amounts of whole blood in a single counting chamber. A low-cost disposable multilayer microdevice for microfluidic image cytometry was developed that comprises a 1 mm × 22 mm × 70 µm (w × l × h) rectangular microchannel, allowing the analysis of trace volume of blood (20 µL) for each assay. Automated analysis of digitized binary images applying a border following algorithm was performed allowing the qualitative analysis of erythrocytes. Bright-field imaging was used for the detection of erythrocytes and fluorescence imaging for 5-part differentiation of leukocytes after acridine orange staining, applying a convolutional neural network enabling unparalleled speed for identification and automated morphology classification yielding 98.57% accuracy. Blood samples were obtained from 30 volunteers and count values did not significantly differ from data obtained using a commercial automated hematology analyzer.


Assuntos
Leucócitos , Microfluídica , Humanos , Eritrócitos , Aprendizado de Máquina , Citometria por Imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...